ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY

  • JB Peravali Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
  • SR Kotara Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
  • K Sobha Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
  • R Nelson Department of Botany, Govt. Arts College, Ariyalur, Tamilnadu, India
  • K.V Rajesh Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
  • K K Pulicherla Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,

Abstract

Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMP’s) are of greatest potential to represent a new class of antibiotics. These peptides have a good scope in current antibiotic research. During the past two decades several AMPs have been isolated from a wide variety of animals (both vertebrates and invertebrates), and plants as well as from bacteria and fungi. These are relatively small (<10kDa), cationic and amphipathic peptides of variable length, sequence and structure. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, protozoa, yeast, fungi and viruses. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. Antimicrobial peptides encompass a wide variety of structural motifs such as α -helical peptides, β -sheet peptides, looped peptides and extended peptides. Preparations enriched by a speciï¬c protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure.  Several fusion strategies have been developed for the expression and puriï¬cation of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems which were produced by cloning. This article aims to review in brief the sources of antimicrobial peptides, diversity in structural features, mode of action, production strategies and insight into the current data on their antimicrobial activity followed by a brief comment on the peptides that have entered clinical trials.

Author Biographies

JB Peravali, Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
SR Kotara, Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
K Sobha, Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
R Nelson, Department of Botany, Govt. Arts College, Ariyalur, Tamilnadu, India
Department of Botany, Govt. Arts College, Ariyalur, Tamilnadu, India
K.V Rajesh, Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
Department of Biotechnology, Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh, India
K K Pulicherla, Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,
Department of Biotechnology, R.V.R. & J.C.C.E, Guntur, Andhra Pradesh, India,

References

ALAIN, L. – JOSEPH M. CHAN – ARMIN, SCHWARTZMAN. 2007. Coplanar and coaxial orientations of RNA bases and helices. In RNA, vol. 13, p. 643 – 650.

ANDERSONS, D. – ENGSTROM, A. – JOSEPHSON, S. – HANSSON, L. – STEINER, H. 1991. Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein A. In Biochem. J. vol. 280, p. 219 – 224.

ANDREU, D – RIVAS L. 1998. Animal antimicrobial peptides: An overview. In Biopolymers. Vol. 47, p. 415 – 33.

BALS, R. 2000. Epithelial antimicrobial peptides in host defense against infection. In Resp Res. Vol. 1, p. 141 – 50.

BARRA, D. – SIMMACO, M. 1995. Amphibian skin: a promising resource for antimicrobial peptides. In Trends Biotechnol. Vol. 13, p. 205 – 10.

BECHINGER, B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. In Biochim. Biophys. Acta. Vol. 1462, p. 157 – 183.

BERTHOLD, M. – SCANARINI, CHARLES. – ABENY, C. – FRORATH, B. – NORTHEMANN, W. 1992. Purification of Recombinant Antigenic Epitopes of the Human 68-Kda (U1) Ribonucleoprotein Antigenic Using the Expression System pH6EX3 Followed by Metal Chelating Affinity Chromatography. In Protein Expression and Purification. Vol. 3, p. 50 – 56.

BOHAYCHUK, V.M. – FRANZ, C.M.A.P. – VAN BELKUM, J.M. – STILES, M.E. – MCMULLEN, L.M. 1999. Heterologous expression of brochochin-C in Carnobacterium spp. (Abstracts of the Sixth Symposium on Lactic Acid Bacteria: Genetics, metabolism and applications). Veldhoven, The Netherlands: FEMS; p. C54.

BOTTARI, E. 1990. Zinc(II) complexes with aspartate and glutamate. In J Coord Chem. Vol. 21, p. 215 - 24.

BROGDEN, K. A. – ACKERMANN, M. – HUTTNER, K.M. 1997. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. In Antimicrob. Agents Chem. Vol. 41, p. 1615 – 1617.

BROGDEN, K. A. 2011. Chapter 6. Perspectives and peptides of the next generation. In: Rebuffat, S. and Drider, D. (eds). Procaryotic Antimicrobial Peptides from Genes to Applications. Springer-USA.

BROGDEN, K.A. – ACKERMAN, M. – MCCRAY, P.B. – TACK B.F. 2003. Antimicrobial peptides in animals and their role in host defences. In International Journal of Antimicrobial Agents. Vol. 22, p. 465 – 478.

BROGDEN, K.A. – DE LUCCA, A.J. – BLAND, J. – ELLIOTT S. 1996. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. In Proc. Natl Acad. Sci. Vol. 93, p. 412 – 416.

BROUWER, C.P. – RAHMAN, M. – WELLING, M.M. 2011. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. In Peptides, Vol. 32, p. 1953 – 1963.

BULET, P. – HETRU, C. – DIMARCQ, J.L. – HOFFMANN, D. 1999. Antimicrobial peptides in insects, structure and function. In Dev Comp Immunol. Vol. 23, p. 329 – 44.

CAMMUE, B.P.A. – DE BOLLE, M.F.C. – SCOFFS, H.M.E. – TERRAS, F.R.G. - THE VISSEN, K. – OSBORN, R.W. 1994. Gene encoded antimicrobial peptides from plants. In: Bomam HG, Marsh J, Goode JA, editors. Antimicrobial peptides. New York: Wiley; p. 91 – 106.

CAPSONI, F. – ONGARI, A. – COLOMBO, G. – TURCATTI, F. – CATANIA, A. 2007. The synthetic melanocortin (CKPV)2 exerts broad anti-inflammatory effects in human neutrophils. In Peptides. Vol. 28, p. 2016 – 2022.

CAVERLY, J.M. – RADI, Z.A. – ANDREASEN, C.B. – DIXON, R.A. – BROGDEN, K.A. – ACKERMANN, M.R. 2001. Comparison of bronchoalveolar lavage fluid obtained from Mannheimia haemolytica – inoculated calves with and without prior treatment with the selectin inhibitor TBC1269. In Am J Vet Res. Vol. 62, p. 665 – 72.

CHART, H. – SMITH, H.R. – LA RAGIONE, R.M. – WOODWARD, M.J. 2000. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. In J. Appl. Microbiol. Vol. 89, p. 1048 – 1058.

DIMARCQ, J.L. – BULET, P. – HETRU, C. – HOFFMANN, J. 1998. Cysteine-rich antimicrobial peptides in invertebrates. In Biopolymers. Vol. 47, p. 465 – 78.

EISENBERG, D. 1984. Three-dimensional structure of membrane and surface proteins. In Annu Rev Biochem. Vol. 53, p. 595 – 623.

FALLA, T.J. – KARUNARATNE, D.N. 1996. Mode of action of the antimicrobial peptide indolicidin. In J Biol Chem. Vol. 271, p. 19298 – 303.

FEHLBAUM, P. – BULET, P. – CHERNYSH, S. – BRIAND, J.P. – ROUSSEL, J.P. – LETELLIER, L. 1996. Structure–activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. In Proc Natl Acad Sci USA. Vol. 93, p. 1221 – 5.

FJELL, C.D. – HISS, J.A. – HANCOCK, R.E. – SCHNEIDER, G. 2012. Designing antimicrobial peptides: Form follows function. In Nat. Rev. Drug Discov. Vol. 11, p. 37 – 51.

GABAY, J.E. 1994. Ubiquitous natural antibiotics. In Science. Vol. 264, p. 373 – 4.

GALLO, R.L. – KIM, K.J. – BERNFIELD, M. 1997. Identiï¬cation of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. In J Biol Chem. Vol. 272, p. 13088 – 93.

GARCIA-OLMEDO, F. 1998. Plant defense peptides. In Biopolymers. Vol. 47, p. 479 – 91.

GENNARO, R – SKERLAVAJ, B – ROMEO, D. 1989. Puriï¬cation, composition and activity of two bactenecins, antibacterial peptides of bovine neutrophils. In Infect Immunol. Vol. 57, p. 3142 – 6.

GESELL, J. – ZASLOFF, M. – OPELLA, S.J. 1997. Two-dimensional HNMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. In J Biomol NMR. Vol. 9, p. 127 – 35.

GILES, F.J. – REDMAN, R. – YAZJI, S. – BELLM, L. 2002. Iseganan HCl: A novel antimicrobial agent. In Expert Opin. Investig. Drugs. Vol. 11, p. 1161 – 1170.

HANCOCK, R.E. – SAHL, H.G. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. In Nat. Biotechnol. Vol. 24, p. 1551 – 1557.

HANCOCK, R.E.W. – GILL, DIAMOND. 2000. The role of cationic antimicrobial peptides in innate host defences. In Trends in microbiology. Vol. 8, p. 402 – 410.

HANCOCK, R.E.W. – ROBERT, LEHRER. 1998. Cationic peptides : A new source of antibiotics. In Tibtech. Vol. 16, p. 34 – 44.

HANCOCK, R.E.W. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. In Lancet Infect Dis. Vol.1, p. 156 – 64.

HIRATA, M. – SHIMOMURA, Y. – YOSHIDA M. 1994. Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide- inhibitory activity. In Infect Immun. Vol. 62, p. 1421 – 6.

HOCHULI, H. – DOBELI, A. – SCHACHER. 1987. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. In J. Chromatogr. Vol. 411, p. 177 – 184.

HOFFMAN, J.A. – KAFATOS, F.C. – JANEWAY, C.A. – EZEKOWITZ, R.A.B. 1999. Phylogenetic perspectives in innate immunity. In Science. Vol. 284, p. 1313 – 8.

HORWITZ, A.H. – LEUGH, S.D. – ABRAHAMSON, S. – GAZZANO-SANTORO, H. – LIU, P.S. – WILLIAM, R.E. – CARROLL, S.F. – THEOFAN, G. 1996. Expression and characterization of cysteine modified variants of an amino-terminal fragment of bactericidal/permeability-increasing protein. In Protein Expr. Putif. Vol. 8, p. 28 – 40.

HUANG, Y. – HUANG, J. – CHEN, Y. 2010. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. In Protein Cell. Vol. 1, p. 143 – 152.

JAPELJ, B. – ZORKO, M. – MAJERLE, A. – PRISTOVSEK, P. – SANCHEZ-GOMEZ, S. – MARTINEZ DE TEJADA, G. – MORIYON, I. – BLONDELLE, S.E. – BRANDENBURG, K. – ANDRA, J. – LOHNER, K. 2007. The acyl group as the central element of the structural organization of antimicrobial lipopeptide. In J. Am. Chem. Soc. Vol. 129, p. 1022 – 1023.

KAWABATA, S. – NAGAYAMA, R. – HIRATA, M. 1996. Tachycytin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin binding activity. In J Biochem. Vol. 120, p. 1253 – 60.

LAEDERACH, A. – ANDREOTTI, A. – FULTON, D. 2002. Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives. In Biochemistry. Vol. 41, p. 12359 – 12368.

LAFORCE, F.M. – BOOSE, D.S. 1984. Effect of zinc and phosphate on an antibacterial peptide isolated from lung lavage. In Infect Immun. Vol. 45, p. 692 – 6.

LAWYER, C. – PAI, S. – WATABE, M. 1996. Antimicrobial activity of a 13 amino acid trytophan-rich peptide derived from a puative porcine precursor protein of a novel family of antibacterial peptides. In FEBS Lett. Vol. 390, p. 95 – 98.

LEHLER, R.I. – LICHTENSTEIN, A.K. – GANZ, T. 1993. Defensins: antimicrobial and cytotoxic peptides in mammalian cells. In Annu Rev Immunol. Vol. 11, p. 105 – 28.

LAMBERTY, M. – ZACHARY, D. – LANOT, R. – BORDEREAU, C. – ROBERT, A. – HOFFMANN, J.A. – BULET, P. 2001. Insect immunity. constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in termite insect. In Journal of Biological Chemistry, Vol. 276, no. 6, p. 4085 – 4092.

MANDARD, N. – SODANO, P. – LABBE, H. – BONMATIN, J.M. – BULET, P. – HETRU, C. 1998. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. In Eur J Biochem. Vol. 256, p. 404 – 10.

MARIA PAPAGIANNI. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. In Biotechnology advances. Vol. 21, p. 465 – 499.

MARR, A.K. – GOODERHAM, W.J. – HANCOCK, R.E. 2006. Antibacterial peptides for therapeutic use:Obstacles and realistic outlook. In Curr. Opin. Pharmacol. Vol. 6, p. 468 – 472.

MATSUZAKI, K. – MURASE, O. – FUJII, N. – MIYAJIMA K. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. In Biochemistry. Vol. 35, p. 11361 – 11368.

MATSUZAKI, K. – NAKAYAMA, M. – FUKUI, M. – OTAKA, A. – FUNAKOSHI, S. – FUJII, N. 1993. Role of disulï¬de linkages in tachyplesin–lipid interactions. In Biochemistry. Vol. 32, p. 11704 – 10.

MATSUZAKI, K. 1999. Why and how are peptide-lipid interactions utilized for self-defense Magainins and tachyplesins as archetypes. In Biochim. Biophys. Acta. Vol. 1462, p. 1 – 10.

MERRIFIELD, R. B. – MERRIFIELD, E. L. – JUVVADI, P. – ANDREU, D. – BOMAN, H.G. 1994. Design and synthesis of antimicrobial peptides. In Ciba Found. Symp. Vol. 186, p. 5 – 20.

MINDUK, SEO. – HYUNGSIK, WON. – JIHUN, KIM. – TSOGBADRAKH MISHIG, OCHIR. – BONGJIN, LEE. 2012. Antimicrobial Peptides for Therapeutic Applications: A Review. In Molecules, Vol. 17, p. 12276 – 12286.

NISSEN-MEYER, J. – NES, I.F. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis and mechanism of action. In Arch Microbiol. Vol. 167, p. 67 – 77.

NGUYEN, L.T. – HANEY, E.F. – VOGEL, H.J. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. In Trends Biotechnol. Vol. 29, p. 464 – 472.

ORIVEL, J. – REDEKAR, V. – LE CAER, J.P. – KRIER, F. – DEJEAN, A. – ROSSIER J. 2001. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. In J Biol Chem. Vol. 276, p. 17823 – 9.

OYSTON, P.C. – FOX, M.A. – RICHARDS, S.J. – CLARK, G.C. 2009. Novel peptide therapeutics for treatment of infections. In J. Med. Microbiol. Vol. 58, p. 977 – 987.

PIERS, K.L. – BROWN, M.H. –HANCOCK, R.E.W. 1993. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. In Gene. Vol. 134, p. 7 – 13

PORATH, J. – CARLSSON, J. – OLSSON, I. – BELFRAGE, G. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. In Nature. Vol. 258, p. 598 – 599.

PORCIATTI, E. – MILENKOVIC, M. – GAGGELLI, E. – VALENSIN, G. – KOZLOWSKI, H. – KAMYSZ, W. – VALENSIN, D. 2010. Structural characterization and antimicrobial activity of the Zn(II) complex with P113 (demegen), a derivative of histatin 5. In Inorg. Chem. Vol 49, p. 8690 – 8698.

PORCELLI, F. – BUCK-KOEHNTOP, B.A. – THENNARASU, S. – RAMAMOORTHY, A. – VEGLIA, G. 2006. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry. Vol. 45, p. 5793 – 5799.

POUNY, Y. – SHAI, Y. 1992. Interaction of D-amino acid incorporated ana- logues of pardaxin with membranes. In Biochemistry. Vol. 31, p. 9482 – 90.

POWERS, J.P.S. – HANCOCK, R.E.W. 2003. The relationship between peptide structure and antibacterial activity. In Peptides. Vol. 24, p. 1681 – 1691.

ROZEK, C. E. – DAVIDSON, N. 1986. Differential Processing of RNA Transcribed from the Single Copy Drosophila Myosin Heavy Chain Gene Produces Four Messenger RNAs which Encode Two Polypeptides. In Proc. Natl. Acad. Sci. USA. Vol. 83, p. 2128 – 2132.

ROTEM, S. – MOR, A. 2009. Antimicrobial peptide mimics for improved therapeutic properties. In Biochim. Biophys. Acta. Vol. 1788, p.1582 – 1592.

SAJJAN, U.S. – TRAN, L.T. – SOLE, N. – ROVALDI, C. – AKIYAMA, A. – FRIDEN, P.M. – FORSTNER, J.F. – ROTHSTEIN, D.M. 2001. P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. In Antimicrob. Agents Chemother. Vol. 45, p. 3437 – 3444.

SHAI, Y. 1999. Mechanism of the binding, insertion and destabi- lization of phospholipid bilayer membranes by helical antimicrobial and cell non-selective membrane-lytic peptides. In Biochim. Biophys. Acta. Vol. 1462, p. 55 – 70.

SMITH, D.B. – JOHNSON, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. In Gene. Vol. 67, p. 31 – 40.

STEINER, J. – HULTMARK, D. – ENGSTROM, A. – BENNICH, H. – BOMAN H.G. 1981. Sequence and speciï¬city of two antibacterial proteins involved in insect immunity. In Nature. Vol. 292, p. 246 – 8.

STEVENS, R.C. 2000. Design of high-throughput methods of protein production for structural biology. In Struct. Fold Des. Vol. 8, p. 177 – 185.

STUART, J HARRISON. – AILSA, M MCMANUS. – JOHN, P MARCUS. – KEN, C GOULTER. – JODIE, L GREEN. – KATHERINE, J NIELSEN. – DAVID, J CRAIK. – DONALD, J MACLEAN. – JOHN, M MANNERS. 1999. Purification and Characterization of a Plant Antimicrobial Peptide Expressed in Escherichia coli. In Protein expression and purification. Vol. 15, no. 2. P. 171 – 177.

TOSSI, A. – SANDRI, L. – GIANGASPERO, A. 2000. Amphipathic, alpha-helical antimicrobial peptides. In Biopolymers. Vol. 55, p. 4 – 30.

TRAVIS, S.M. – ANDERSON, N.N. – FORSYTH, W.R. 2000. Bactericidal activity of mammalian cathelicidin- derived peptides. In Infect Immun. Vol. 68, p. 2748 – 55.

TEIXEIRA, V. – FEIO, M.J. – BASTOS, M. 2012. Role of lipids in the interaction of antimicrobial peptides with membranes. In Prog. Lipid Res. Vol. 51, p.149 – 177.

VANDENDRIESSCHE, L. 1956. Inhibitors of ribonuclease activity. In Arch Biochem Biophys. Vol. 65, p. 347 – 53.

VELDEN, W.J. – VAN IERSEL, T.M. – BLIJLEVENS, N.M. – DONNELLY, J.P. 2009. Safety and tolerability of the antimicrobial peptide human lactoferrin 1–11 (hLF1–11). In BMC Med. Vol. 7, p. 44.

WIEPRECHT, T. – DATHE, M. – EPAND, R.M. – BEYERMANN, M. – KRAUSE, E. – MALOY, W.L. – MACDONALD, D.L. – BIENERT, M. 1997. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. In Biochemistry. Vol. 36, p. 12869 – 12880.

WIM VAN T HOF. – ENNO C.I. VEERMAN. – EVA J. HELMERHORST. – Arie V. Nieuw Amerongen. 2001. Antimicrobial Peptides: Properties and Applicability. In Biological Chem. Vol. 382, no. 4. p. 597 – 619.

WINANS, K.A. – KING, D.S. – RAO, V.K. – MAUZERALL, D. 1999. A chemically synthesized version of the insect antibacterial glycopeptide, diptericin, disrupts bacterial membrane integrity. In Biochemistry. Vol. 38, p. 11700 – 10.

WITTE, W. – TSCHAPE, H. – KLARE, I. – WERNER, G. 2000. Antibiotics in animal feed. In Acta Vet Scand. Vol. 93, p. 37 – 45.

WU, M. – MAIER, E. – BENZ, R. – HANCOCK, R.E.W. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. In Biochemistry. Vol. 38, p. 7235 – 7242.

WON, H.S. – SEO, M.D. – JUNG, S.J. – LEE, S.J. – KANG, S.J. – SON, W.S. – KIM, H.J. – PARK, T.K. – PARK, S.J. – LEE, B.J. 2006. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. In J. Med. Chem. Vol. 49, p. 4886 – 4895.

WON, H.S. – KANG, S.J. – LEE, B.J. 2009. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. In Biochim. Biophys. Acta.Vol. 1788, p. 1620 – 1629.

XU, T. – LEVITZ, S.M. – DIAMOND, R.D. – OPPENHEIM, F.G. 1991. Anticandidal activity of major human salivary histatins. In Infect Immunol. Vol. 59, p. 2549 – 54.

YANG, L. – HARROUN, T.A. – WEISS, T.M. – DING, L. – HUANG, H.W. 2001. Barrel-stave model or toroidal model A case study on melittin pores. In Biophys J. Vol. 81, p. 1475 – 1485.

ZASLOFF, M. – MARTIN, B. – CHEN, H.C. 1988. Antimicrobial activity of synthetic magainin peptides and several analogues. In Proc Natl Acad Sci U S A. Vol. 85, no. 3, p. 910 – 913.

ZASLOFF, M. 2002. Antimicrobial peptides of multicellular organisms. In Nature. Vol. 415, p. 389 – 95.

ZHANG, L. – BENZ, R. – HANCOCK, R.E.W. 1999. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. In Biochemistry. Vol. 38, p. 8102 – 11.

ZHANG, L. – ROZEK, A. – HANCOCK, R.E.W. 2001. Interaction of cationic antimicrobial peptides with model membranes. In J Biol Chem. Vol. 276, p. 35714–22.

Published
2013-04-01
How to Cite
Peravali, J., Kotara, S., Sobha, K., Nelson, R., Rajesh, K., & Pulicherla, K. K. (2013). ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY. Mintage Journal of Pharmaceutical and Medical Sciences (ISSN: 2320-3315), 1-7. Retrieved from http://mjpms.in/index.php/mjpms/article/view/112